If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+1=26
We move all terms to the left:
a^2+1-(26)=0
We add all the numbers together, and all the variables
a^2-25=0
a = 1; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·1·(-25)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*1}=\frac{-10}{2} =-5 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*1}=\frac{10}{2} =5 $
| -(v+4)+5=4v+1–5v7. | | -4y+16=4(y-6) | | 60+25v=20+35v | | 8x-2+3x=31 | | 4(-4-6x)=-88 | | 2(6=6x)+x=12+4x | | 4z+5z−19z–15=5 | | 4x-6x+12-4=16 | | (4x/7)-8=1 | | x/3–4=15 | | -5x+17-8x=58 | | -7.8=4.4=+2r | | 7^(2x-6)=1154 | | 0=x^2+27x+74 | | 30x9=9x(3+10 | | 9x+7+15+2x=9x+x+x | | -7h=-35 | | 5(3x+4)+8=58 | | 4z+5z−19z−–15=5 | | 6x+5x=19+2x | | 12x^2+53x-24=-3+4x^2 | | 3x+2+x=2x+1+2x+1 | | 75+10c=15+c | | m4−2=1 | | -12-4(15+10v)=-132 | | 20w-9w+2w+4w+3w=20 | | -3g+5+2.7g=12.7 | | $$0x+1=7x+9. | | –10t=–9t+2 | | 3x+2=5x–1 | | 2.3x-12=12.5 | | 7x-8=3x+17 |